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Setting

Question

Dynamic Programming

We consider the setting of Undiscounted Finite-Horizon Tabular
Markov Decision Processes M(X, A, P, R, H).
We are interested in the Return seen as a random variable :

H
Z™(x) = ZRh, Xo==
h=0

Most of the literature focuses on optimizing the Expected Return :

max L Z7 ()]

— can we optimize other risk-aware functionals ) of the Return, such
as CVaR, quantiles, etc?

max (27 (2))

What functionals of the return can be optimized
exactly through Dynamic Programming ?

Main Result

Motivation

The only continuous Bellman Optimizable functionals are:

- The Expected Return : E|[Z]

- The Exponential Utilities : Elexp(AZ)]

— The statistics optimizable through Distributional RL are the same as
with Classical RL.

— Exponential utilities allow for risk-dependant strategies
eg.f Z ~N(u,0), A 1InElexp(AZ)] = pu+ Ao

( )

Bellman Equation and Dynamic Programming :

QZ(.’B, a) = It [Rh]l+ Zp(ma a, :B!) HL?'X Q;-I—l (:E’: a‘f)
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Figure 4: Dynamic Programming for Expected Return

The distributional form, using Z,°"(x,a) ~ n,*(z,a) and Ry (x,a) ~
on(x,a) Is:

(1, (2,a)) = (@h(w, a) * > pu(w, a2 )np (2, a2+1,xf))

Bellman Optimizable Properties

For some environments with a complex Return distribution, optimizing
the mean might be arbitrary. The functional ) can be a risk measure of
the Return, leading to risk-dependent strategies.

Safe Policy With small probability,
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Figure 1: Cliff MDP where the agent should go from S to G.
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Figure 2: Distribution of the return for the policy in Cliff.

Can such policy be computed through dynamic programming ?

Distributional RL

— Objective of Distributional RL: Estimate the whole distribution of the
return, instead of only its expectation.

— There exists a Distributional Bellman Equation:

Zy(x,a) =Ry + 27 (X', A")

Reward

Figure 3: Distributional Dynamic Programming. [Bellemare et. al, 2023]

— Convenient tool for Dynamic Programming: Vh,xz, choose a* =
argmax_ (27 (z,a)). From h = H down to 0, compute recursively a

policy mpp

A Bellman Optimizable functional v» necessarily verifies 2 properties:

* 1. Independence Property. Mixing in other distributions should
not change the choice of action.

w(Vl) Z w(VQ) — VVg,\V/)\,w()\Vl—I—(l—)\)Vg) Z lb()\VQ—F(l—)\)Vg))

— allows to apply the Expected Utility Theorem: v can be written in the
form E|f(-)| for some f.

o 2. [ranslation Property: Translating by a constant should not
change the choice of action.

Y(v1) 2> Y(re) = Ve, Pi(- +c¢)) > P(va(- +c¢))

— allows to find a differential equation verified by f. The solutions are
the Exponential and Linear functions.
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Definition : Bellman Optimizable

A functional ¢ is said to be Bellman Optimizable it =P is optimal for any
Markov Decision Processes.
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