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Setting

Undiscounted Finite-Horizon Tabular Markov Decisions Processes
M(X ,A, P,R,H):

• X and A the finite State Space and Action Space

• P the Transition Kernel : xh+1 ∼ pah

h (xh, ·)

• R the Random Reward of distribution ρ: rh ∼ ρ
(xh,ah)
h , bounded

with ∆R

• H the horizon

We write Zπ
h (s, a) =

∑H
i=h ri | sh = s, ah = a, ai ∼ π(si) the return, and

η
(s,a)
h,π its distribution.

Distributional RL
→ Objective of Distributional Reinforcement Learning : Estimate the
whole distribution of the return, instead of only the Expectation.

→ There exists a Distributional Bellman Equation:

∀x, a, h, η
(x,a)
π,h = ρ

(x,a)
h ∗

∑
x′

pah(x, x
′)η

(x,πh+1(x))
π,h+1 . (1)

→ In practice distributions are not tractable : they need to be
parametrized.

Algorithm 1 Parametrized Policy Evaluation for Distributional RL

1: Input: model p, reward distributions ρh, policy π to evaluated, Π
projection.

2: Data: η ∈ RH|X ||A|N

3: ∀x, a ∈ X ×A, η
(x,a)
H = δ0

4: for h = H − 1 → 0 do
5: η

(x,a)
h = ρh(x, a) ∗

∑
x′ pah(x, x

′)η
(x′,πh+1(x

′))
h+1 ∀x, a ∈ X ×A

6: η
(x,a)
h = Π

(
η
(x,a)
h

)
∀x, a ∈ X ×A

7: end for
8: Output: η(x,a)h ∀x, a, h

Objective

(i) Which functionals can be exactly optimized through Bellman Dy-
namic Programming?

(ii) How accurately can we evaluate statistical functionals by using
DistRL?

Exact Planning and Bellman Optimization

Algorithm 2 Pseudo-Algorithm: Exact Planning with Distributional RL

1: Input: model p, reward R, statistical functional s
2: Data: η ∈ RH|X ||A|N , ν ∈ RH|X |N

3: ∀x ∈ X , νxH+1 = δ0
4: for h = H → 1 do
5: η

(x,a)
h = ρ

(x,a)
h ∗

∑
x′ pah(x, x

′)νx
′

h+1 ∀x, a ∈ X ×A
6: νxh = η

(x,a∗)
h , a∗ ∈ argmaxas(η

(x,a)
h ) ∀x ∈ X

7: end for
8: Output: η(x,a)h ∀x, a, h

→ Intuition : Dynamic Programming is used to compute distributions
of the return. The actions are chosen to optimize the statistic at every
timestep h.

Definition. A statistical functional s is said Bellman Optimizable
if Algorithm 2 outputs an optimal distribution for s:

Results
A Bellman Optimizable statistical functional necessarily verifies 2 prop-
erties:

• Independence Property : If ν1, ν2 ∈ P(R) are such that s(ν1) ≥
s(ν2), then

∀ν3 ∈ P(R),∀λ ∈ [0, 1], s(λν1+(1−λ)ν3) ≥ s(λν2+(1−λ)ν3)) .

• Translation Property : Let τc denote the translation on the set of
distributions: τcδx = δx+c. If ν1, ν2 ∈ P(R) are such that s(ν1) ≥
s(ν2), then

∀c ∈ R, s(τcν1) ≥ s(τcν2) .

Theorem 2. The only Bellman Optimizable statistical function-
als are exponential utilities Uexp = 1

λ logE [exp(λR)] for λ ∈ R,
with the special case of the expectation E [R] when λ = 0.

→ The statistics optimizable through Distributional RL are the same
than with Classical RL.

→ Policy-improvement-like algorithms may only work exactly with the
exponential utilities.

Approximate Policy Evaluation

• s a statistic of the form s(η) = EZ∼η [f(Z)] or s(η) =
Eτ∼U(0,1)

[
β′(τ)F−1

η (τ)
]
, β or f L-Lipschitz.

• The Quantile Parametrization with Resolution N : Π(η) = 1
N

∑
δzi

with zi ∈ F−1
η ( 2i+1

2N )

Theorem 1. Let η̂π be the approximated return distribution
computed with Algorithm 1. Then, the error with the computed
statistic is bounded:

sup
x,a,h

|s(η̂(x,a)π,h )− s(η
(x,a)
π,h )| ≤ LH2∆R

2N
.

→ The error is up to quadratic in the horizon.

Experimental Validation

Figure 1: Chain MDP with a stationnary reward B(0.5).

Figure 2: Right : The Wasserstein Error is the sum of the successive Projection Errors.
Left : The CVaR Error is quadratic in the horizon.
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