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Figure: Example of distribution where the mean gives little information
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The general RL framework

Markov Decision Process[1]

Definition (Markov Decision Processes)

An MPD is a tuple M(X ,A,P, γ), where:

X is a finite state space

A a finite action space

P a transition probability kernel that assigns to each pair (x , a) ∈ X ×A a
probability measure on X × R
γ ∈ [0, 1[ the discount

The return, that we aim to optimize is:

R = E
[
r(x0, a0) + γr(x1, a1) + γ2r(x2, a2) + . . .

]
= E

[ ∞∑
t=0

γtr(xt , at)

]
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The general RL framework

Definition

A decisision rule d is a function that maps each state to a probability distribution
on the action space :

d : X 7→ P(A)

It is said deterministic if it of the form d: X 7→ A

Definition

A policy is a sequence of decision rule:

π = (d0, d1, d2, . . . )

It is said stationnary if it uses a unique decision rule.
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The general RL framework

Theorem (Bertsekas, 2007)

If an optimal policy exists, it can be chosen to be stationnary.

Proposition (Bellman optimality principle[2])

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

Corollary

If an optimal policy exists, then it can be chosen to be deterministic.
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The general RL framework

Definition

The Value functions V and Q are defined by:

V π(x) = E

[ ∞∑
t=0

γtr(xt , at)|x0 = x

]

Qπ(x , a) = E

[ ∞∑
t=0

γtr(xt , at)|x0 = x , a0 = a

]

with xt ∼ p(·|xt−1, at−1) and at ∼ π(·|xt)

Definition

The Optimal Value functions V ⋆ and Q⋆ are defined by:

V ⋆(x) = max
π

E

[ ∞∑
t=0

γtr(xt , at)|x0 = x

]
= V π⋆

(x)

Q⋆(x , a) = max
π

E

[ ∞∑
t=0

γtr(xt , at)|x0 = x , a0 = a

]
= Qπ⋆

(x , a)
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The general RL framework

Definition (Bellman Operator)

Let V : X 7→ R or Q : X ×A 7→ R, π a policy. The Bellman operator T π is
defined by:

∀x ∈ X , T πV (x) =
∑
a∈A

π(a|x)

(
E [r(x , a)] + γ

∑
x′∈X

p(x ′|x , a)V (x ′)

)

∀x , a ∈ X×A, T πQ(x , a) = E [r(x , a)]+γ
∑

x′,a′∈X×A
p(x ′|x , a)π(a′|x ′)Q(x ′, a′)

Definition (Optimal Bellman Operator)

Let V : X 7→ R or Q : X ×A 7→ R, π a policy. The Bellman operator T ⋆ is
defined by:

∀x ∈ X , T ⋆V (x) = max
a∈A

E [r(x , a)] + γ
∑
x′∈X

p(x ′|x , a)V ⋆(x ′)

∀x , a ∈ X ×A, T ⋆Q(x , a) = E [r(x , a)] + γ
∑
x′∈X

p(x ′|x , a) max
a′∈A

Q⋆(x ′, a′)
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The general RL framework

Proposition

The Bellman Operators are γ-contractions.

Theorem (Banach fixed point[3])

Let (X , d) be a non-empty complete metric space with a contraction mapping
T : X 7→ X. Then T has admits a unique fixed-point x⋆ ∈ X and

∀x ∈ X , T n(x) −→ x⋆ exponentially

Corollary (Algorithms)

Iterating the Bellman operators is an algorithm to compute the value functions.
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The Distributional RL framework Metrics

Metrics

Definition (Wasserstein Metric[4])

Let p ≥ 1 and Pp(R) the space of distributions with finite pth moment. Let
ν1, ν2 ∈ Pp(R) with respective cumulative distribution function F and G . The
p-Wasserstein distance dp is then defined as :

dp(ν1, ν2) =

(∫ 1

0

∣∣F−1(u)− G−1(u)
∣∣p du) 1

p

Definition ([4])

Let ν1, ν2 ∈ P(R). We define the family of metrics ℓp by :

ℓp(ν1, ν2) =

(∫
R
(Fν1(x)− Fν2(x))

pdx

) 1
p

ℓ2 is called the Cramer distance.
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The Distributional RL framework Metrics

Framework

The random return is the sum of the discounted random reward:

Z (x , a) =
∞∑
t=0

γRt | X0 = x ,A0 = a (1)

The idea is that the distribution of the reward would follow similar Bellman
equations:

Z (x , a)
D
= R(x , a) + γZ (X ′,A′) (2)

with X ′,A′ the random next state-action.
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The Distributional RL framework Policy Evaluation

Policy Evaluation

Let’s consider a policy π. The distribution of the random return under π will be
written as follows:

η(x,a)π = Lawπ

( ∞∑
t=0

γRt | X0 = x ,A0 = a

)
The random return associated to policy π verifies the distributional Bellman
equation:

ηπ = T πηπ

where T π is the Bellman operator defined by:

T πη(x,a) =

∫
R

∑
(x′,a′)∈X×A

(fr ,γ)#η
(x′,a′)π(a′|x ′)p(r , x ′|x , a)dr

with (fr ,γ)#η is the pushforward measure define by f#η(A) = η(f −1(A)) for all
Borel sets A ⊆ R and fr ,γ(x) = r + γx for all x ∈ R.
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The Distributional RL framework Policy Evaluation

Proposition

T π is a γ-contraction under the maximal p-Wasserstein metric dp (for p ≥ 1).

Corollary

∀η ∈ P(R)X×A, (T π)nη −→
n→∞

ηπ

with an exponential convergence for the norm dp.
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The Distributional RL framework Control

Control

We define by optimal distribution a distribution associated to an optimal policy:

η⋆ ∈ {ηπ⋆ | π⋆ ∈ arg max
π

ER∼ηπ
[R]}

As expected, the optimal distributions verify the optimal distributional Bellman
equation: η⋆ = T η⋆ with

T η(x,a) =

∫
R

∑
(x′,a′)∈X×A

(fr ,γ)#η
(x′,a⋆(x′))p(r , x ′|x , a)dr

where a⋆(x ′) = arg maxa′∈A ER∼η(x′,a′) [R]
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The Distributional RL framework Control

Lemma

Let η1, η2 ∈ P(R)X×A, we write E [η] := EZ∼η [Z ]. Then:

∥E [T η1]− E [T η2]∥∞ ≤ γ ∥E [η1]− E [η2]∥∞

Which means that E [T nη] −→
n→∞

Q⋆ exponentially quickly.

But also:

Theorem

Let X and A be finite. Let η ∈ P(R)X×A. There exist an optimal policy π⋆

(potentially nonstationary), such that:

T nη −→
n→∞

ηπ⋆ uniformly in dp, p ≥ 1
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The Distributional RL framework Control

Proposition

The optimality operators are not always contractions.

Proposition

The optimality operators do not always have fixed points.
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The Distributional RL framework Distribution approximations

Distribution approximations

Main issue: we need a way to approximate the distributions. We have
parametrizations:

Categorical Parametrization

Quantile Parametrization
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The Distributional RL framework Distribution approximations

Categorical Approach

The idea is to use the hypothesis of bounded reward to use evenly spread diracs
on that reward support, and use the diracs weight as the parameters.

Figure: Example of a distribution projected by with the categorical approach

The projection operator is defined by:

ΠC (δy ) =


δz0 y ≤ z0
zi+1−y
zi+1−zi

δzi +
y−zi

zi+1−zi
δi+1 zi < y < zi+1

δzN−1
y ≥ zN−1

(3)
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The Distributional RL framework Distribution approximations

Proposition

ΠCT π is not a contraction for dp with p > 1.

Proposition

ΠCT π is a p
√
γ-contraction in ℓp.

∃!ηC ∈ PX×A
C , ∀η0 ∈ P(R)X×A, (ΠCT π)mη0 −→

m→∞
ηC exponentially quickly in ℓp

(4)

Lemma

Let ηC defined as in (4). Assume that ηπ is supported on [z0, zN−1]. Then:

ℓ2(ηC , ηπ) ≤
1

1− γ
∆z
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The Distributional RL framework Distribution approximations

Quantile Approach

We define the quantile projection operator by Πd1ν =
1

N

N−1∑
i=0

δzi with

zi = F−1

(
2i + 1

2N

)
. This leads to a minization of the Wasserstein metrics

between the true distribution and the parametrized space.

Figure: Example of a distribution projected with the quantile approach
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The Distributional RL framework Distribution approximations

Proposition

Πd1T π is γ-contraction in d∞ :

d∞(Πd1T πη1,Πd1T πη2) ≤ γd∞(η1, η2)
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Personnal Work
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Personnal Work

Framework

We are still considering MDPs of the form M(X ,A,P,R, γ), but with another
value to optimize. We consider x ∈ X a specific state, and τ ∈ [0, 1] the quantile
of interest. Our objective is:

max
π

Vτ (x) = qτ

( ∞∑
t=0

γRt | X0 = x

)
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Personnal Work

Cliff environment
Env

Page 1

S E

Figure: State space of the Cliff environment

The reward received when reaching E is set to 10. The reward received when
falling is set to −10.
The agent can move in the 4 directions, but has only 0.7% chances to go in the
chosen direction, and has 0.1% chances to go any other direction.
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Personnal Work Policy Evaluation

Policy Evaluation

In Practice:

Iterating the Bellman algorithm and compute the quantile of the output
distribution works well

In Theory:

No guaranteed bound on the difference between the computed quantile and
the real one.

(T π)nη −→
n→∞

ηπ ⇏ qτ ((T π)nη) −→
n→∞

qτ (ηπ)
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Personnal Work Policy Evaluation

Safe

Page 2

→ → → → ↓

↑ ↑ ↑ ↑ ↓

↑ ↑ ↑ ↑ ↓

S E

(a) Safe policy (b) Distribution of return

Greedy

Page 3

→ → → → ↓

→ → → → ↓

→ → → → ↓

S E

(a) Risky policy (b) Distribution of return
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Personnal Work Control

Counter example Bellman Optimality Principle

q1

q2 q3

q4 q5

p = 0.7, r=10

p = 0.3, r=0

2, 3

1, 4
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Personnal Work Control

Mean9_2

Page 5

→ → → → ↓

↑ ↑ → → ↓

↑ ↑ ↑ → ↓

S E

Figure: Behavior on mean optimization γ = 0.99

Mean9

Page 4

→ → → → ↓

→ → → → ↓

↑ ↑ → → ↓

S E

Figure: Behavior on mean optimization, γ = 0.9
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Personnal Work Control

Median case

No convergence:
Median

Page 8

→ ↓ ↓ ↓ ↓

→ → → ↓ ↓

→ → → → ↓

S E

→ ↓ ↓ ↓ ↓

→ ↓ → ↓ ↓

→ → → → ↓

S E

(a) 1st output policy

Median

Page 8

→ ↓ ↓ ↓ ↓

→ → → ↓ ↓

→ → → → ↓

S E

→ ↓ ↓ ↓ ↓

→ ↓ → ↓ ↓

→ → → → ↓

S E

(b) 2nd output policy

Median

Page 9

↓ → ↓ ↓ ↓

← ↓ → ↓ ↓

↑ → → → ↓

S E

→ → ↓ ↓ ↓

↓ → → ↓ ↓

→ → → → ↓

S E

(c) 3rd output policy

Median

Page 9

↓ → ↓ ↓ ↓

← ↓ → ↓ ↓

↑ → → → ↓

S E

→ → ↓ ↓ ↓

↓ → → ↓ ↓

→ → → → ↓

S E

(d) 4th output policy

Figure: Policies output by median optimisation

Issues with equal medians due to the distribution approximation. The medians
were still higher than the mean case.
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Personnal Work Control

Quantile Case

q80

Page 7

↓ ↓ ↓ ↓ ↓

→ → ↓ ↓ ↓

→ → → → ↓

S E

(a) output policy (b) Distribution of return

Figure: Behavior on 0.8 quantile optimazation

The policy is risky, as expected, and the quantile 0.8 is higher than the mean case.
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Personnal Work Control

q20

Page 6

→ → → → ↓

→ → → → ↓

↑ ↑ ↑ → ↓

S E

(a) output policy (b) Distribution of return

Figure: Behavior on 0.2 quantile optimazation

The policy isn’t much safer, and the quantile 0.2 is lower than in the mean case.
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Personnal Work Control

About deterministic policies

Lemma

Let n ∈ N, let 0 ≤ λ1, λ2, . . . , λn ≤ 1 such that
∑n

i=0 λi = 1, and µ1, . . . , µn n
distributions. Let qτ the quantile function for τ ∈ [0, 1]. We have:

qτ

(
n∑

i=0

λiµi

)
≤ max

1≤i≤n
qτ (µi )

Corollary

Consider a finite MDP where no state can be visited twice (i.e, without any
loops). Consider a state x ∈ X, and τ ∈ [0, 1]. There exist an deterministic policy
π∗
x that optimizes the τ quantile for state x :

V
π∗
x (x)

τ = max
π

V π
τ (x)
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Personnal Work Control

q1

q2

q3

q4 q5

q6

q7

q8

Figure: Example of an MDP on which the corollary applies
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Conclusion
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Conclusion

Conclusion

Main work of the intership:

Find the bibliography and understand the Distributionnal Framework.

Develop a small librairy to experiment on this distributional framework.

Experiment on it with quantile Optimization, understand behaviors.

Find some counter examples and a little theoretical result.

Conclusion of the internship: Quantile Optimization is hard and the theoretical
results are sparse. Some results are promising, but a quantity such as the expectile
would be better to optimize on.
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Conclusion
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